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Abstract

The work aims at discussing the role of predictive uncertainty in flood forecasting and
flood emergency management, its relevance to improve the decision making process
and the techniques to be used for its assessment.

Real time flood forecasting requires taking into account predictive uncertainty for a5

number of reasons. Deterministic hydrological/hydraulic forecasts give useful informa-
tion about real future events, but their predictions, as usually done in practice, cannot be
taken and used as real future occurrences but rather used as pseudo-measurements
of future occurrences in order to reduce the uncertainty of decision makers. Predictive
uncertainty (PU) is in fact defined as the probability of occurrence of a future value of10

a predictand (such as water level, discharge or water volume) conditional upon prior
observations and knowledge as well as on all the information we can obtain on that
specific future value from model forecasts. When dealing with commensurable quanti-
ties, as in the case of floods, PU must be quantified in terms of a probability distribution
function which will be used by the emergency managers in their decision process in15

order to improve the quality and reliability of their decisions.
After introducing the concept of PU, the presently available processors are intro-

duced and discussed in terms of their benefits and limitations. In this work the Model
Conditional Processor has been extended to the possibility of using a joint truncated
normal distribution, in order of improving adaptation to low and high flows.20

The paper concludes by showing the results of the application of the MCP on the
Baron Fork River, OK, USA. The data set provided by the NOAA’s National Weather
Service, within the DMIP 2 Project, allowed two physically based models, the TOPKAPI
model and TETIS model, to be calibrated and a data driven model to be implemented
using the Artificial Neural Network. The three model forecasts have been combined25

with the aim of reducing the PU and improving the probabilistic forecast taking advan-
tage of the different capabilities of each model approach.
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1 Introduction

1.1 Decision making under uncertainty

In the last decades, the interest in assessing uncertainty in models forecasts has grown
exponentially within the scientific communities of meteorologists and hydrologists. In
particular, the introduction of the Hydrological Uncertainty Processor (Krzysztofowicz,5

1999; Krzysztofowicz and Kelly, 2000), aimed at assessing predictive uncertainty in
hydrological forecasts, has created the basis for the estimation of flood predictive un-
certainty.

Flood emergency management requires adopting operational decisions in real time
that may lead to dramatic consequences (economical losses, casualties, etc.). The10

hardest obstacle the managers have to deal with is the uncertainty on the future evo-
lution of events. Decision theory (De Groot, 1970; Raiffa and Schlaifer, 1961) studied
this problem and provided the most appropriate solutions for taking decisions under
uncertainty. This approach consists in minimizing the expected value of a utility func-
tion U(y) representing the losses, or more in general the manager perception of them,15

as a function of a predictand that will occur at a future time (such as a future discharge
or water stage in a cross section). This quantity is unknown at the time of the decision
(t0) and the aim of forecasting is to assess its probability of occurrence, in terms of
a predictive uncertainty probability density function.

In the case of flood forecasting, predictive uncertainty can be defined as the uncer-20

tainty that a decision maker has on the future evolution of a predictand that he uses to
make a specific decision.

In order to fully understand and to appreciate what is actually meant by predictive
uncertainty, it is necessary to realize that what will cause the flooding damages is the
actual future realization of the discharge and/or the water level that will occur, not the25

prediction generated by a forecasting model; in other words the damages will occur
when the actual water level yt and certainly not if the prediction ŷt will overtop the dyke
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level yD (Todini, 2009). Therefore a utility/damage function at any future time (t>t0)
must be expressed as a function of the actual level that will occur at time t{
U(yt)=0 ∀yt ≤ yD
U(yt)=g(yt−yD) ∀yt >yD

(1)

where g(·) represents a generic function relating the cost of damages and losses to
the future, albeit unknown water stage yt. In this case the manager, according to the5

decision theory (De Groot, 1970; Raiffa and Schlaifer, 1961), must take his decisions
on the basis of the expected utility E{U(yt)}. This value can be estimated only if the
probability density function of the future event is known, and it can be written as

E{U(yt)}=
+∞∫
0

U(yt)f (yt)dyt (2)

where f (yt) is the probability density expressing our incomplete knowledge (in other10

words our uncertainty) on the future value that will occur. This density, which can be
estimated from historical data, is generally too broad because it lacks the conditionality
on the current events. This is why it is essential to improve this historical probabil-
ity distribution function by more realistically using one or more hydrological models
able to summarize all the available information (like the rain forecast, the catchment15

geomorphology, the state of the river at the moment of the forecast, etc. . . ) and to
provide a more informative density f (yt |ŷt|t0), which expresses our uncertainty on the
future predictand value after knowing the models’ forecasts issued at time t0, namely
ŷt|t0 = [ŷ1t|t0

,ŷ2t|t0
,...,ŷMt|t0

], where M is the number of forecasting models. Equation (2)
can now be rewritten as20

E
{
U
(
yt |ŷt|t0

)}
=

+∞∫
0

U(yt)f
(
yt |ŷt|t0

)
dyt (3)
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The probability distribution function f (yt |ŷt|t0) represents the PU, hereafter denomi-
nated f (y |ŷ) for sake of simplicity.

Summarizing, for a decision maker to take rational decisions it is necessary first of
all to define his propensity to risk (e.g. the decision-maker could be risk-prone when
the level of damage is low or risk-averse when the level of damage is high), which5

afterwards can be included in the chosen utility function, and then try to minimize the
expected value of this risk on the basis of a predictive density function conditional on
all the information he/she can gather and in particular on the available model forecasts.
In this paper the available uncertainty processors (UPs) will be discussed, focusing on
the Model Conditional Processor (MCP) (Todini, 2008) and highlighting the problem of10

the error heteroscedasticity and how to tackle it.

1.2 The probabilistic threshold paradigm

Today, similarly to what was done for more than a century, in order to trigger their
decisions, the majority of water authorities involved in flood emergency management
prepare their plans on the basis of pre-determined water depths or thresholds ranging15

from the warning water level to the flooding level. Decisions, and consequent actions,
are then taken as soon as a real time measure of the water stage overtops one of
these thresholds. This approach, which is correct and sound in the absence of flood
forecasting models is a way of anticipating events on the basis of water level measures
(in the cross sections of interest or in upstream cross sections), but can only be effective20

on very large rivers where the time lag between the overtopping of the warning and the
flooding levels is sufficiently large to allow for the implementation of the planned flood
relief strategies and interventions (Todini and Coccia, 2010).

Given that all the water stage measures are affected by relatively small errors (1–
2 cm), they can be, and have been, considered as deterministic; therefore in the sequel25

this approach will be referred to as the deterministic threshold paradigm.
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Unfortunately, the advent and the operational use of real time flood forecasting mod-
els, has not changed this paradigm, which has been the cause of several unsatisfactory
results. Today, the flood managers, instead of comparing the actual measurements to
the different threshold levels, they compare the forecasts, namely the hydrologic or hy-
draulic models’ outputs, which is obviously done in order to further anticipate decisions5

by taking advantage from the prediction time horizon. Unfortunately, by doing so the
forecasts are implicitly assumed to be real and deterministic, which is not the case,
given that the forecasts, by their nature are virtual reality and are affected by prediction
errors, which magnitude is by far larger than that of the measurement errors.

More recently, the concept of predictive uncertainty has radically changed the deter-10

ministic threshold paradigm (Todini and Coccia, 2010). This inherent uncertain nature
of forecasts, as opposed to the higher accuracy of measurements, requires the defini-
tion of a probabilistic threshold paradigm, defined in terms of the probability of flooding
taken at different probability levels (20%, 50%, etc.) instead of the definition of deter-
ministic threshold values. The probabilistic thresholds, as opposed to the deterministic15

water level thresholds, can result into improved tools in the hands of decision mak-
ers. As it will be shown in the sequel, using the probabilistic thresholds, the same
predicted water level may have different meaning and different effects on decisions ow-
ing to the reliability of prediction. In other words the same forecast may or may not
trigger the decision of issuing a warning or evacuating an area, conditionally to its as-20

sessed level of uncertainty. More uncertain forecasts need necessarily to be treated
more cautiously than more reliable ones; uncertain lower water stage forecasts could
then trigger a protective measure, whereas higher, albeit more accurate water stage
forecasts, would not.

Particular attention must be given to the probability of exceeding an alert threshold25

(for example the dike level or the corresponding discharge), which for simplicity will be
called alert level. Namely, the knowledge of the predictive uncertainty allows a proba-
bility alert threshold to be estimated instead of the commonly used deterministic alert
level. As mentioned above, model forecast is a representation of the reality, but not
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the reality itself. Hence, the comparison between the deterministic model prediction
and the actual alert level can be considered an incorrect operational approach, since
one compares to the real threshold a virtual quantity such as the forecast instead of
real quantity that will occur in the future. A more correct way to proceed would be to
account for the probability of exceeding the alert level conditional to the knowledge of5

the model(s) forecast(s) in terms of a probabilistic threshold value, which must reflect
the emergency manager’s safety concept. With the probabilistic threshold concept
the reliability of the different models can also be taken in account because it is the
spread of the density that characterises the uncertainty, not the expected value. As
can be seen from the Fig. 1, for the same expected value (the horizontal dashed line)10

a better forecast (Model A), characterised by a narrower predictive density, will show
a smaller probability of exceedance of the flooding level when compared to a worse
one (Model B).

This property can be looked at from an alternative perspective, giving scope to the
definition of a probabilistic forecast paradigm. As shown in Fig. 2 the same proba-15

bility of flooding (exceedance of the flooding threshold level) corresponds to a lower
expected value if the spread of PU is larger (Model B) than when it is narrower (Model
A). This implies that if a probabilistic threshold is defined (for instance 15% probability
of flooding) instead of a deterministic threshold level, when the PU is larger the deci-
sion maker must be more cautious and would be advised to issue an alert even when,20

looking at the expected value of the forecast, he would not think of issuing it, because
he may regard it as being too low.

Nonetheless, the pre-requisite to implement the new probabilistic threshold paradigm
is an accurate and effective estimate of predictive uncertainty. In this paper the intro-
duction of a new probabilistic thresholds paradigm and how this is conditioned upon25

a reliable estimate of predictive uncertainty will be discussed. The paper also aims at
showing how the probabilistic threshold paradigm may lead to a dynamic application
of the principle of precaution as a function of the degree of predictive uncertainty with
consequent benefits both in terms of increased reliability and robustness of decisions.
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2 Existing approaches

2.1 Hydrological uncertainty processor

Krzysztofowicz (1999) introduced a Bayesian processor, the Hydrological Uncertainty
Processor (HUP) which aims at estimating the predictive uncertainty given a set of
historical observations and a hydrological model prediction. The HUP was developed5

around the idea of converting both observations and model predictions into a normal
space by means of the NQT in order to derive the joint distribution and the predic-
tive conditional distribution from a treatable multivariate distribution. In practice, as
described in Krzysztofowicz (1999), after converting the observations and the model
forecasts available for the historical period into the normal space, the HUP combines10

the prior predictive uncertainty (in this case derived using an autoregressive model)
with a Likelihood function in order to obtain the posterior density of the predictand con-
ditional to the model forecasts. From the normal space this conditional density is finally
re-converted into the real space in order to provide the predictive probability density.

The introduction of HUP generated a positive impact into the hydrological commu-15

nity, because it was the first time that predicting uncertainty was correctly formulated
and used in hydrological forecasting. Nonetheless, HUP has three major limitations.
The first one relates to the fact that only one model at a time can be used in HUP,
which is hardly extendable to multi model forecasts. Moreover the used prior autore-
gressive (AR) model frequently tends to be inadequate to represent the predictand, as20

for instance in the case of a flood routing problem where the AR model is adequate for
representing the recession but not the rising limb of the flood wave. Finally, the HUP
procedure implies the independence of the AR model errors from those deriving from
the used prediction model, which is not guaranteed due to the fact that both models
tend to be highly correlated to the observations, which inevitably induces a level of25

correlation among them.
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2.2 Bayesian model averaging

Introduced by Raftery (1993), Bayesian Model Averaging (BMA) has gained a certain
popularity in the latest years. The scope of Bayesian Model Averaging is correctly for-
mulated in that it aims at assessing the mean and variance of any future value of the
predictand conditional upon several model forecasts. Differently from the HUP assump-5

tions, in BMA all the models (including the AR prior model) are similarly considered as
alternative models. Raftery et al. (2005) developed the approach on the assumption
that the predictand as well as the model forecasts were approximately normally dis-
tributed, while Vrugt and Robinson (2007) relaxed this hypothesis and showed how
to apply the BMA to Log-normal and Gamma distributed variables. In practice the10

Bayesian Inference problem, namely the need for estimating a posterior density for the
parameters, is overcome in the BMA by estimating a number of weights via a con-
strained optimization problem. Once the weights have been estimated, BMA allows to
estimate the mean and the variance of the predictand conditional upon several models
at the same time.15

The original BMA, as introduced by Raftery (1993), has shown several problems.
First of all, as pointed out by Vrugt and Robinson (2007), the original assumption of
approximately normally distributed errors, is not appropriate for representing highly
skewed quantities such as water discharges or water levels in rivers. Therefore one
must either relax this hypothesis, as done by Vrugt and Robinson (2007) who applied20

the BMA to Log-normal and Gamma distributed variables or to convert the original
in the normal space once again using the NQT, as done in Todini (2008). Another
problem, which emerges from the application of BMA is the use of the “expectation-
maximization” (EM) algorithm (Dempster et al., 1977) proposed by Raftery et al. (2005),
which was not found to properly converge to the maximum of the likelihood. To over-25

come this problem, one can either use sophisticated, complex optimization tools such
as the SCEM-UA (Vrugt et al., 2003) or, as proposed by Todini (2008), a simple and
original constrained Newton-Raphson approach, which converges in a very limited
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number of iterations.

2.3 Model conditional processor

The Model Conditional Processor (MCP) is a Bayesian methodology, proposed by To-
dini (2008), for estimating the predictive uncertainty. The derivation of the predictive
distribution is essentially based on the estimation of a joint predictand-prediction dis-5

tribution, computed by taking advantage of the model behaviour knowledge acquired
through the available historical series. Since the multivariate distributions can be formu-
lated and effectively analytically treated in a very limited number of cases, Krzysztofow-
icz (1999) suggested transforming the observations and model forecasts in a Gaussian
or normal space via a non parametric transformation known as the Normal Quantile10

Transform (NQT) (Van der Waerden, 1952, 1953a,b). The NQT allows the observation
y and the model forecast ŷ to be converted into a normal space using the quantiles
associated to the order statistics, computed by means of the Weibull plotting position.

The original variables y and ŷ are so converted to their transformed values η and η̂,
respectively, which are distributed with a normal standard distribution, and the proba-15

bility of each element is the same as its original corresponding value. So the relation
between the original variables and their transformed values is

P (y <yi )=
i

n+1
= P (η<ηi ) , for i =1,...,n ,

where n is the number of the historical available data and i the plotting position order.
In the normal space the joint distribution of η and η̂ can be assumed as a normal20

bivariate, f (η,η̂), with mean and variance

µη,η̂ =
[

0
0

]
(4)

Ση,η̂ =

[
1 σηη̂

σηη̂ 1

]
(5)
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Moreover, the covariance between η and η̂, due to the normal standard distribution of
the two variables, is equal to the correlation coefficient ρηη̂. Hence, the Eq. (5) can be
written as the cross correlation matrix

Ση,η̂ =
[

1 ρηη̂
ρηη̂ 1

]
(6)

Through the knowledge of the joint and marginal distributions it is easy to compute the5

predictive distribution according to the Bayes theorem. In fact, the predictive uncer-
tainty, defined as the distribution of the predictand conditioned on the model forecast,
can be obtained by calculating the ratio between the joint distribution and the forecast
marginal distribution

f (η|η̂)=
f (η,η̂)

f (η̂)
=

[
2π
∣∣∣∣ 1 ρηη̂
ρηη̂ 1

∣∣∣∣]−
1
2

exp

(
−1

2

[
η η̂
][ 1 ρηη̂

ρηη̂ 1

]−1[
η
η̂

])
[2π]−

1
2 exp

(
−1

2 η̂
2
) (7)10

This equation leads to the definition of the predictive distribution in the normalspace as
a normal distribution with moments

µη|η̂ = ρηη̂ · η̂
σ2
η|η̂ = 1−ρ2

ηη̂
(8)

Therefore, after obtaining the conditional probability in the normal space, the results15

have to be converted into the real world in order to compute the predictive probability
f (y |ŷ). To do so the predictive density has to be sampled in the normal space and then
the obtained quantiles have to be reconverted into the real space by a reverse process.
This is due to the fact that the transformation is highly non linear, and, for instance, the
mean value in the normal space does not correspond to the mean value in the real20

world, in fact it corresponds to the median (50% probability) (Todini, 2009). In this
process the use of the Weibull plotting position implies the need of using an additional
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model to be fitted to the tails of all the variables, namely the observations and the model
forecast, in the real space, in order to accommodate probability quantiles larger than
n

n+1 or lower than 1
n+1 .

The multi-model case

The previously described MCP methodology has generated the idea of generalizing the5

procedure using a multi-normal approach (Todini, 2008). Often, a real time forecasting
system is composed by more than one model, or a chain of models, and the emergency
manager has to take a decision on the basis of multiple forecasts of the same quantity
that may also be very different from each other. It is very difficult to find an objective
way to state that one model is better than another, or to assign a correct weight to each10

forecast in order to extrapolate from all the available information a stochastic forecast
that allows the emergency to be managed in the best way.

In order to combine several model forecasts, the MCP can be improved by general-
izing the bivariate normal approach to a multivariate normal approach (Mardia et al.,
1979). In this case the Multivariate space is composed by M+1 variables, that are the15

observed discharges (or water levels) y and the M predictions ŷk , k=1,...,M. Using the
NQT, all the variables are converted to their transformed values, η and η̂k , k=1,...,M,
in the multi-normal space.

All the variables in the normal space have a standard normal distribution and the
predictive uncertainty, defined now as the distribution of the future event conditioned20

on the forecasts of the M models, can be expressed as (y |ŷ1,...,ŷM ), for simplicity
abbreviated to f (y |ŷk) for the original variable and f (η|η̂k) in the normal space.

The joint distribution is a multi-normal distribution with mean and variance

µη,η̂k
=

0
...
0

 (9)

9230

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/9219/2010/hessd-7-9219-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/9219/2010/hessd-7-9219-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 9219–9270, 2010

Recent developments
in predictive
uncertainty
assessment

G. Coccia and E. Todini

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Ση,η̂k
=


1 σηη̂1

··· σηη̂M

ση̂1η
. . . . . .

...
...

. . . . . . ση̂M−1η̂M
ση̂Mη ··· ση̂M η̂M−1

1

 (10)

Moreover, all the covariances, due to the normal standard distribution of all the vari-
ables, are equal to the correlation coefficients. So Eq. (10) can be written as the cross
correlation matrix

Ση,η̂k
=



1 ρηη̂1
ρηη̂2

··· ρηη̂M

ρη̂1η 1 ρη̂1η̂2

. . . ρη̂1η̂M

ρη̂2η ρη̂2η̂1

. . . . . .
...

...
. . . . . . . . . ρη̂M−1η̂M

ρη̂Mη ρη̂M η̂1
··· ρη̂M η̂M−1

1


(11)5

Defining

Σηη =1

Σηη̂ =
[
ρηη̂1

ρηη̂2
··· ρηη̂M

]

Ση̂η̂ =


1 ρη̂1η̂2

··· ρη̂1η̂M

ρη̂2η̂1

. . . . . .
...

...
. . . . . . ρη̂M−1η̂M

ρη̂M η̂1
··· ρη̂M η̂M−1

1


(12)
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and substituting Eq. (12) in Eq. (11), the cross correlation matrix can also be written as

Ση,η̂k
=

[
Σηη Σηη̂

Σηη̂
T Ση̂η̂

]
(13)

Then the predictive uncertainty can be expressed as

f (η|η̂k)=
f (η,η̂1,...,η̂M )

f (η̂1,...,η̂M )
(14)

The solution of Eq. (14) is easily obtained and leads to a normal distribution with mo-5

ments derived from Eq. (13) as

µη|η̂k =Σηη̂ ·Ση̂η̂
−1 ·

 η̂1
...

η̂M


σ2
η|η̂k

=1−Σηη̂ ·Ση̂η̂
−1 ·Σηη̂

T

(15)

Please note that Eq. (15) does not differ from the classical multiple regression results.
As done for the univariate case, the predictive uncertainty in the real world, f (y |ŷk),

is obtained by converting f (η|η̂k) by means of the inverse NQT.10

2.4 The error heteroscedasticity problem: quantile regression and truncated
normal joint distributions

The latest uncertainty processors (UP) approaches tackle the problem of the het-
eroscedasticity of the errors often present in hydrological modelling. All the previously
described techniques imply homoscedasticity of the error variance, which is assumed15

to be independent from the magnitude of the observed or forecasted values. In real
cases this assumption leads to a lack of accuracy, especially at reproducing high flows,
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because the NQT tends to increase the variance of the lower values. Moreover, the
number of observed and computed low and medium flows is much larger than that of
high flows with the consequence of a higher weight in the determination of the regres-
sion or the correlation coefficients used by the different approaches. As a consequence
the estimation of high flows in the normal space will be affected by a distortion in the5

mean as well as an overestimation of the variance, which will inevitably increase when
returning into the real space.

Recently, in order to overcome this problem, the quantile regression (Koenker, 2005)
was used (Weerts et al., 2010).

2.4.1 Quantile regression10

The Quantile Regression (QR) approach tries to represent the error heteroscedastic-
ity identifying a linear variation of the quantiles of the PU as a function of the model
forecast magnitude. This technique allows all the desired quantiles of the PU to be
assessed in the normal space and then reconverted by means of the inverse NQT to
the real space. The τ-th sample quantile is computed solving the Eq. (16), from which15

is possible to identify the parameters aτ and bτ which defines the linear regression for
the τ-th quantile.

min
aτ ,bτ ∈R

n∑
i=1

ρτ(η−a−bτ · η̂) (16)

where

ρτ(x)=
{
x · (τ−1) if x <0
x ·τ if x≥0

20

The problem is correctly formulated and allows each quantile of the PU to be com-
puted, but it requires the estimation of at least two parameters per quantile (in the
linear case) and the number of parameters to be estimated may become quite large.
Moreover, QR not always improves from assuming homoscedasticity: this depends on
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the actual distribution of the errors. Figure 3a and b show two situations in which the
use of QR leads to very different results. Figure 3a is an optimal situation for using QR
because the variation of error variance is linearly decreasing with the magnitude of the
forecasts and the resulting quantiles well represent the real distribution of the data. On
the contrary, in Fig. 3b it is not possible to identify a linear variation of the error variance5

and the use QR does not provide improved assessments of PU, particularly for high
forecast values.

2.4.2 Truncated normal joint distributions

In the situation represented in Fig. 3b a different alternative approach can be used to
improve results. Namely, within the MCP framework the entire normal domain is divided10

into two (or more) sub-domains where Truncated Normal Distributions (TNDs) can be
used (Coccia and Todini, 2010). In this case, the MCP can be applied assuming that
the joint distribution in the normal space is not unique, but can be divided into two (or
more) TNDs. A threshold separating low flows form high flows in the forecast domain
is relatively easy to be identified. Figure 4 shows the two TNDs that can be used in the15

example.
The identification of the two TNDs is not immediate, but can be obtained by the

following procedure that depends on the number of available forecasting models.

2.4.3 TNDs with only one forecasting model

After converting the original variables y and ŷ to their transformed values η and η̂,20

the so obtained samples are assumed to belong to two unknown normal distributions
truncated over η̂ by a threshold a. The moments of these truncated distributions can
be estimated by equating them to the sampling moments.
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For the sample that includes the high flows, the truncated normal distribution for η̂>a
is

f (η̂|η̂ > a)=
f (η̂)∫+∞

a f (η̂)dη̂
=

f (η̂)

1−Fη̂(a)
(17)

with f (η̂) defined as

f (η̂)=
1

√
2πsη̂

exp

−1
2

(
η̂−mη̂

sη̂

)2
 (18)5

where m̂ and ŝ are the mean and the standard deviation of the non truncated, albeit
unknown distribution.

Therefore, the joint distribution is the following truncated normal bivariate distribution

f (η,η̂|η̂ > a)=
f (η,η̂)∫+∞

−∞
[∫+∞

a f (η,η̂)dη̂
]
dη

=
f (η,η̂)

1−Fη̂(a)
(19)

Where f (η,η̂) is defined as10

f (η,η̂)=

exp
{
−1

2

[
η−mη η̂−mη̂

]
S−1
[
η−mη
η̂−mη̂

]}
√

2π|S |
(20)

where S=

[
s2
η sηη̂

sηη̂ s2
η̂

]
.

In Eqs. (18) and (20), the values of mη̂, sη̂, mη, sη and sηη̂ are unknown but can be
derived from the sampling moments. Applying the Bayes theorem to the truncated nor-
mal, the predictive uncertainty (which in this case represents the probability distribution15

of η conditional on the model forecast η̂∗>a) becomes

f (η|η̂ > a,η̂∗)=
f (η,η̂|η̂ > a,η̂∗)

f (η̂|η̂ > a,η̂∗)
=
f (η,η̂|η̂∗)

f (η̂|η̂∗)
(21)
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and it is normally distributed with mean and variance

µη|η̂>a,η̂∗ = mη+
sηη̂
sη̂2

(η̂∗−mη̂)

σ2
η|η̂>a,η̂∗ = s2

η−
s2
ηη̂

s2
η̂

(22)

Similarly for η̂∗<a, Eqs. (17) and (19) become, respectively

f (η̂|η̂ < a,η̂∗)=
f (η̂)∫a

−∞ f (η̂)dη̂
=

f (η̂)

Fη̂(a)
(23)5

f (η,η̂|η̂ < a,η̂∗)=
f (η,η̂)∫+∞

−∞
[∫a

−∞ f (η,η̂)dη̂
]
dη

=
f (η,η̂)

Fη̂(a)
(24)

According to the procedure described in Appendix A, the previous equations allow the
PU in the normal space to be defined as a normal distribution with mean and variance

µη|η̂>a,η̂∗ =µη+
σηη̂

ση̂
2

(η̂∗−µη̂)

σ2
η|η̂>a,η̂∗ =σ2

η−
σηη̂

2

ση̂
2

(25)

for the case that the predicted value η̂∗ is greater than the threshold value a. Here µη,10

µη̂ are, respectively the sample means of η|η̂>a and η̂|η̂>a and ση, ση̂ are their sample
standard deviations. These moments are obviously computed considering only the
sample including the data belong to the upper sample.
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If η̂∗ is lower than the threshold value a, the mean and variance of PU in normal
space are

µη|η̂,η̂∗<a =µη+
σηη̂

ση̂
2

(η̂∗−µη̂)

σ2
η|η̂,η̂∗<a =σ2

η−
σ2
ηη̂

σ2
η̂

(26)

where µη, µη̂, ση and ση̂ are computed taking in account only the data of the lower
sample.5

2.4.4 TNDs with more than one forecasting model

When dealing with more than one model, the procedure becomes a bit more difficult.
The threshold should be identified for each model and the joint distribution would be
represented by 2M MTNDs (where M is the number of models) that include all the
possible simultaneous combinations of each model overtopping or not its respective10

threshold. The moments of each MTNDs should be obtained by means of the sampling
moments computation, but unfortunately in real cases often the available data are not
enough to identify representative samples and the MTNDs cannot be well assessed.

In order to avoid this situation the problem can be tackled with a different approach.
The MCP can be applied in three phases. Firstly, each model is processed separately15

using the TNDs as described above. In this phase, for each model its threshold is
identified. In the second phase, the series of expected values of each model simu-
lation (previously obtained) are combined using two MTNDs indentified on the basis
of the model that better represented the high flows. In other words, for each model
the variances of the upper sample are computed and then they are compared each20

other in order to identify which model will be used in the second phase in order to split
the multivariate joint distribution in two MTNDs. Finally, in the third phase the series
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of expected values computed in the second phase is processed using the TNDs as
described above. The detailed description of the procedure is the following.

Considering M available models and applying to each model the methodology de-
scribed in Sect. 2.4.2.1, the following parameters are computed

– a′i = threshold used for identifying the TNDs of the model i=1,M5

– σ2
η|η̂i=η̂∗i>a

′
i
= conditioned variance of the upper TND for model i=1,M

In the second phase the joint MTNDs are identified on the basis of the model k,
which is the model that better represents the high flows:

σ2
η|η̂k>a′k ,η̂

∗
k
<σ2

η|η̂i>a′i ,η̂
∗
i

∀ i 6=k

Considering the upper sample, for sake of simplicity let’s define the vector a, such as10 {
ai =−∞ ∀i 6=k
ak =a′k

the vector η̂ represents the variables related to the model simulations,

η̂=

 η̂1
...

η̂M

 .

The joint distribution of the simulated variables η̂i>−∞ ∀ i 6=k and η̂k>ak is

f (η̂|η̂k >ak)=
f (η̂)

1−Fη̂k (ak)
(27)15

Where f (η̂) is defined as

f (η̂)=
exp
{
−1

2 [η̂−m̂]S−1
η̂η̂ [η̂−m̂]T

}
(2π)1/M

√∣∣Sη̂η̂

∣∣ (28)
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where

m̂=

mη̂1
...

mη̂M


is the vector containing the means of the marginal distributions of η̂ and Sη̂η̂ is the
covariance matrix between the variables η̂

Sη̂η̂ =


s2
η̂1

sη̂2η̂1
··· sη̂M η̂1

sη̂1η̂2

. . . . . .
...

...
. . . . . . sη̂M−1η̂1

sη̂1η̂M ··· sη̂1η̂M−1
s2
η̂M

 (29)5

Therefore, the joint distribution of all the variables is the following MTND

f (η,η̂|η̂k >ak)=
f (η,η̂)

1−Fη̂k (ak)
(30)

Where f (η,η̂) is defined as

f (η,η̂)=

exp
{
−1

2

[
η−m η̂−m̂

]
S−1
[
η−m
η̂−m̂

]}
(2π)

1
M+1 ·
√
|S|

(31)

where m is the mean of the marginal distributions of η and10

S =

[
Sηη Sηη̂

ST
ηη̂ Sη̂η̂

]
(32)
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with:

Sηη = s2
η

Sηη̂ =
[
sηη̂1

···sηη̂m
]

In Eqs. (28) and (31), m̂, Sη̂η̂, m, Sηη and Sηη̂ are unknown but can be derived from
the sampling moments.5

Applying the Bayes theorem to the joint MTND, the predictive uncertainty, namely
the probability distribution of η conditional on the realization of the model forecasts η̂

∗,
becomes

f (η|η̂k >ak ,η̂
∗)=

f (η,η̂|η̂k >ak ,η̂
∗)

f (η̂|η̂k >ak ,η̂
∗)

=
f (η,η̂|η̂∗)

f (η̂|η̂∗)
(33)

Please, note that Eq. (33) is conceptually equal to Eq. (19). In other words, being M10

the number of models considered, f (η,η̂) is a (M+1)-variate and f (η̂) is M-variate, and
in Eq. (19) M=1.

The conditional distribution of Eq. (33) is normally distributed with mean and variance

µη|η̂k>ak ,η̂∗ =m+Sηη̂ ·Sη̂η̂
−1 ·
(
η̂∗−m̂

)
σ2
η|η̂k>ak ,η̂∗ =Sηη−Sηη̂ ·Sη̂η̂

−1 ·Sηη̂
T

(34)

Following the procedure described in Appendix A, the previous equations lead to define15

PU in the normal space as a normal distribution with mean and variance

µη|η̂k>ak ,η̂∗ =µ+Σηη̂ ·Ση̂η̂
−1 · (η̂∗− µ̂)

σ2
η|η̂k>ak ,η̂∗ =Σηη−Σηη̂ ·Ση̂η̂

−1 ·Σηη̂
T

(35)

if the predicted value of the model k, η̂∗
k , is greater than the threshold value ak . Here µ

and µ̂ are, respectively the sample means of η|η̂k>ak and η̂|η̂k>ak and Σηη, Σηη̂, Ση̂η̂
are the components of the covariance matrix of η,η̂|η̂k>ak .20
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Similarly for the sample below the threshold and taking into account that the vector
a is defined as:{
ai =+∞ ∀i 6=k
ak =a′k

Equations (27) and (30) become, respectively

f (η̂|η̂k <ak)=
f (η̂)

Fη̂k (ak)
(36)5

f (η,η̂|η̂k <ak)=
f (η,η̂)

Fη̂k (ak)
(37)

Hence, if η̂∗
k is lower than the threshold value ak , the mean and variance of PU in

normal space are

µη|η̂k<ak ,η̂∗ =µ+Σηη̂ ·Ση̂η̂
−1 · (η̂∗− µ̂)

σ2
η|η̂k<ak ,η̂∗ =Σηη−Σηη̂ ·Ση̂η̂

−1 ·Σηη̂
T

(38)

where µ, µ̂, Σηη, Σηη̂ and Ση̂η̂ are computed taking in account only the data of the lower10

sample.

3 Examples of application

The examples reported in this paper aim at showing the benefits of using a multi-model
approach, which is possible when using the proposed methodology.

3.1 Case study and available data15

The NOAA’s National Weather Service, has provided a long series of observed dis-
charge and precipitation data for the Baron Fork River, OK, USA within the frame of
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the DMIP 2 Project which aims at comparing distributed hydrological models. Using this
data set three models were developed: two physically based hydrological models, the
TOPKAPI model (Todini and Ciarapica, 2001; Liu and Todini, 2002) and TETIS model
(Frances et al., 2007; Velez et al., 2009), and an additional data driven model based on
Artificial Neural Networks. The catchment has a drainage area of about 800 km2 at the5

measurement station of Eldon with a mean slope around 0.25%, while some kilome-
tres downstream Eldon the river flows into the Illinois river. The simulations provided
by the three models have been processed using the MCP firstly separately and then
combined each other.

Available meteorological data were hourly rain and temperature grids included be-10

tween 1 October 1995 and 30 September 2002, with a 4 km resolution. During the
same period the observed discharges in the measurement station of Eldon, OK, were
available, too. Summarizing, the available data allow the basin behaviour to be simu-
lated during a long period of about 7 years with a time step of 1 h.

3.2 The real time flood forecasting models15

The TOPKAPI model has been developed at the University of Bologna (Todini and
Ciarapica, 2001; Liu and Todini, 2002), it is composed of six components, which take
into account the surface, sub-surface and deep flows, the routing in the channel, the
snow accumulation/melt and the evapotranspiration. The application domain is divided
in cells where the mass and momentum balance are solved at every time step. The20

model has been calibrated by a trial and error procedure applied to the data included
between 1 October 1996 and 30 September 2002; the year included between 1 Oc-
tober 1995 and 30 September 1996 has been used as “warm up” period, allowing the
model to reach a reasonable initial state.

In the TETIS model, developed by the Polytechnic University of Valencia (Frances25

et al., 2007; Velez et al., 2009), the conceptual scheme, at each cell, consists of a se-
ries of 5 connected tanks, each one of them representing different water storages in

9242

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/9219/2010/hessd-7-9219-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/9219/2010/hessd-7-9219-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 9219–9270, 2010

Recent developments
in predictive
uncertainty
assessment

G. Coccia and E. Todini

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the soil column. The vertical connections between tanks describe the precipitation,
evapotranspiration, infiltration and percolation processes, whereas, the horizontal flows
represent the main hydrological processes as: snowmelt, overland runoff, interflow and
base flow. The routing along the channel network couples its geomorphologic charac-
teristics with the kinematic wave approach. The Tetis model has an automatic calibra-5

tion procedure applied to the hydrological year included between October 2000 and
September 2001. As done for the TOPKAPI model, the first year of data has been
used as “warm up” period and with the remaining data the model has been validated.

The Artificial Neural Network model is composed of two main phases. Firstly the
data are divided in three groups by means of a Self Organizing Map (SOM) network10

that allows the data to be automatically classified. (Kohonen, 1990; Pujol, 2009). If the
time at which the prediction is done is called t0, the input data to the SOM network are
the accumulated precipitation of 2 days before t0, the discharge observed at t0 and the
gradient of the discharge during 2 h before t0. The SOM network has been calibrated
using the data included between 1 October 1995 and 31 May 1997, the remaining15

data until 30 September 2002 have been used for the validation. The three sets of data
obtained by the automatic classification have been used separately in order to calibrate
three different Multi Layer Perceptron (MLP) networks (Werbos, 1974; Parker, 1987;
Werbos, 1988, 1990; Pujol, 2009), which input data are the observed precipitation
during 13 h before t0 and the observed discharges during 3 h before t0. The output of20

the networks is the discharge 6 h after the t0. Summarizing, the data have been divided
in three groups using the SOM, in order to identify three different hydrological states of
the system, and each group has been calibrated with a Feed Forward Network in order
to forecast the discharge 6 h in advance. Moreover, to avoid the risk of overfitting the
calibration data, the early stopping procedure has been used introducing a verification25

set of data, included between 1 June 1997 and 31 January 1998. The data included
between 1 February 1998 and 30 September 2002 have been used for validating the
model.
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In order to make congruent the forecasts of each model also the TETIS and TOP-
KAPI models have been used to predict the discharge 6 h in advance, assuming, as
done with the ANN, that precipitation is null during the forecast time.

In Fig. 6 a schematic summary of the division of the data used for calibrating and
validating each model is depicted.5

The two physically based models are conceptually quite similar; it can be highlighted
that the Topkapi model tends to underestimate the highest flood events, to overesti-
mate the smallest ones and to reproduce the flood events of medium magnitude quite
well. The Tetis model also generally underestimates the highest events and often un-
derestimates the small events too. The ANN model, due to its nature of data driven10

model, is not able to well reproduce the pick flows, which are often underestimated
and predicted with late of 1 or 2 h, but it has a perfect behaviour in reproducing the low
flows.

3.3 Predictive uncertainty assessment

The MCP has been applied in three phases and in every phase the Joint TNDs have15

been used.
Firstly the models simulations have been processed separately. All the historical data

have been processed and the expected value of the predictive distribution has been
computed at each time step. In the second phase, the series of the expected values
of each model simulation have been processed with the MCP multivariate approach20

and the combined expected value has been computed from the predictive uncertainty
of each time step. Finally, in the third phase, this series of expected values has been
processed.

Figure 7a and b summarize the obtained results with regard to the models combina-
tion computed by means of the expected value of the predictive distribution. Figure 7a25

represents the error standard deviation and Fig. 7b represents the Nash-Sutcliffe coef-
ficient.
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In Figs. 8, 9 and 10, 11 two examples of models combination are shown, one during
the calibration period and the other one during the validation period. In both events the
uncertainty band is narrower as the number of models increases and in the calibration
event the expected value computed with the combination of all the models well matches
the observed series. In the validation event, the pick flow is quite better represented5

when only the Topkapi model is used, probably due to its better forecast in this specific
case, but also in this event the uncertainty band is reduced combining all the models.

The knowledge of the uncertainty distribution also allows the probability of exceeding
an alert threshold to be estimated, that is a stochastic way to predict the flooding risk.
In section 4 a way to identify the alert threshold, different to the deterministic method10

commonly used, will be discussed. The threshold has been set at 350 m3 s−1. In
Figs. 12 and 13, the comparison between the deterministic and stochastic discharge
forecasts and the correspondent probability of overtopping the threshold is shown.

4 Probability of exceeding an alert threshold assessment

The obtained results allow also an analysis of the correctness of probability of exceed-15

ing an alert threshold, estimated using MCP together with the improvement obtainable
using the combination of models, to be performed.

As can be seen from the Fig. 14, apart from a small bias in the lower part mainly
due to the larger error variance of the lower truncated normal, there is a relatively
good agreement between the actual threshold exceedances and the probability of ex-20

ceedance estimated from the PU density obtained through the MCP combination of
the three models (TOPKAPI, TETIS and ANN). This agreement allows for the change
of paradigm discussed in Sect. 1.2, which would not be possible in case of incorrect
estimate of the quantiles.

In addition, Tables 1 and 2 allow to exemplify the improvements obtainable by the25

Bayesian combination of the different models. Table 1 confirms the behaviour repre-
sented in Fig. 1 showing the probability that the true value exceeds the 350 m3 s−1
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threshold when the expected value of prediction equals 250 m3 s−1, computed for each
model and their Bayesian combination. One can see the reduction of exceedance
probability as a function of the quality of the forecast. Finally, the effect of the introduc-
tion of the new probabilistic forecast paradigm can be appreciated in Table 2 where,
similarly to what is qualitatively displayed in Fig. 2, the expected value of the prediction5

corresponding to the probability of 20% that the true value will exceed the 350 m3 s−1

threshold, computed for each model and their Bayesian combination. As can be seen
better models allow to wait until the expected value of prediction is closer to the flood-
ing level, while worse models require earlier action corresponding to lower levels on
the basis of the principle of precaution, which corresponds to the fact that the decision10

maker is more uncertain.

5 Conclusions

The large availability of data on the Baron Fork River allowed the Tetis and Topkapi
hydrologic models and an Artificial Neural Network model to be applied with good re-
sults in terms of forecast quality, and the MCP to be tested with special regard to the15

multivariate methodology. In particular, it has been possible to highlight some impor-
tant issues such as the improvement of the forecast quality, the assessment of the
predictive uncertainty and the computation of the probability of exceeding a flooding
alert threshold.

The combination of the three models’ predictions, obtained by assigning different20

weights to each model according to the Bayesian theory, allows the forecast quality
to be improved as shown by the evaluation indexes in Fig. 7a and b. The two phys-
ically based model structures are very similar, so this leads to a little gain in terms
of forecast improvement, represented by the standard deviation of the errors and the
Nash-Sutcliffe efficiency index (Fig. 7a and b). On the contrary, the combination of one25

physically based model with the data driven model leads to greater improvements in
forecast and, in particular, the combination of all the three models gives the best values
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of the analyzed indexes (Fig. 7a and b). These results show that the combination of
models of different nature allows the probabilistic forecast to improve the deterministic
forecast of each model, taking advantage of the benefits of different hydrological ap-
proaches. The MCP has proved to be quite effective at converting the models virtual
reality into the uncertainty of the future real event by computing its probability distri-5

bution. It is interesting to note that during the validation period, the percentage of the
observed data that fall outside the 90% MCP uncertainty band is 10.3% (7.3% below
the lower quantile and 3% above the upper one). This means that the uncertainty band
can be considered satisfactorily estimated also during validation period, even if the
percentage of data above the upper quantile is slightly greater than the one below the10

lower quantile. Moreover, it is very important to note that the MCP leads to obtain an
objective forecast from the output of several models and can give important support in
taking a decision based on various and different forecasts.

Finally, the assessment of the predictive uncertainty also allows the probability of
exceeding an alert level to be estimated. With this work, a discussion about the con-15

venience of using a probability threshold instead of a deterministic one in order to
estimate the flooding risk and help the decision making process about giving or not
a flood alarm, has been initiated. In fact, the paper highlighted the need for a change
in flood forecasting and warning paradigm which should go through the definition of
probabilistic threshold with the aim of take advantage in a more effective way of the20

use of probabilistic forecasts. The results presented in Sect. 4 show the correctness of
the methodology in estimating the probability of exceeding the alarm threshold. When
the hydrological forecast issue can be defined in terms of a binary response (giving
or not a flood alarm) the probabilistic threshold concept allows the reliability and the
knowledge provided by different models to be taken in account. Therefore, the emer-25

gency manager can express his/her propensity to the risk in terms of probability of
flooding and not just comparing a pre-fixed real threshold with the virtual reality of the
model forecast, as usually done with a deterministic approach.
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Appendix A

Considering M available forecasting models and starting from the hypothesis that the
data divided over η̂k by the threshold ak , belong to two Multivariate Truncated Normal
Distributions (MTNDs) and considering the upper sample, the marginal distributions
of η|η̂k>ak and η̂|η̂k>ak are, respectively a Truncated Normal (TN) and a Multivariate5

Truncated Normal (MTN) called

f (η|η̂k >ak)= TN(µ,Σηη) (A1)

and

f (η̂|η̂k >ak)=MTN(µ̂,Ση̂η̂) (A2)

Their Joint Truncated Distribution is called10

f (η,η̂|η̂k >ak)=MTN
([

µ
µ̂

]
,
[
Σηη Σηη̂

Ση̂η Ση̂η̂

])
(A3)

All the parameters µ, Σηη, µ̂, Ση̂η̂ and Σηη̂ are known, because they are assumed to
be equal to the sample ones.

The distributions

f (η)=N(m,Sηη) (A4)15

f (η̂)=N(m̂,Sη̂η̂) (A5)

f (η,η̂)=N
([

m
m̂

]
,
[
Sηη Sηη̂

Sη̂η Sη̂η̂

])
(A6)

are the Multivariate Complete Normal Distributions (MCNDs) to which the MTNDs,
respectively represented by Eqs. (A1), (A2), (A3), are supposed to belong.

All the parameters of the MCNDs, m, Sηη, m̂, Sη̂η̂ and Sηη̂, are unknown and they20

must be identified in order to define the conditioned distribution, that is the PU in the
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normal space conditioned to the model forecasts that transformed using the NQT gives
a value for the model k greater than the threshold value ak .

In fact, as described by Eq. (33), the conditioned distribution is

f (η|η̂k >ak ,η̂
∗)=

f (η,η̂)

f (η̂)
=N
(
µη|η̂k>ak ,η̂∗ ,σ2

η|η̂k>ak ,η̂∗

)
(A7)

Hence, the mean and variance of the conditioned distribution are (see Eq. 34)5

µη|η̂k>ak ,η̂∗ =m+Sηη̂ ·Sη̂η̂
−1 · (η̂∗−m̂) (A8)

σ2
η|η̂k>ak ,η̂∗ =Sηη−Sηη̂ ·Sη̂η̂

−1 ·Sηη̂
T (A9)

The parameters of the MCNDs can be derived from the following equations, pro-
vided by the truncated multi-normal distribution theory (Tallis, 1961), which relate the
moments of the MTNDs to the ones of the MCNDs.10

m=µ−
σηη̂k√
ση̂k η̂k

·λ(αk) (A10)

m̂= µ̂−
Ση̂η̂k√
ση̂k η̂k

·λ(αk) (A11)

Sηη =σηη+
σηη̂k

2

ση̂k η̂k

·δ(αk) (A12)

Sη̂η̂ =Ση̂η̂+
Ση̂η̂k

·Ση̂η̂k

T

ση̂k η̂k

·δ(αk) (A13)

Sηη̂ =Σηη̂+
σηη̂k ·Ση̂η̂k

ση̂k η̂k

·δ(αk) (A14)15
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where

αk =
ak−mk√

sη̂k η̂k

λ(αk) =
φ(αk)

1−Φ(αk)
(A15)

δ(αk) = λ(αk) · [λ(αk)−αk ]

and φ and Φ, respectively represent the pdf and the cdf of the normal standard distri-5

bution.
The equality between Eq. (34) and Eq. (35) (or between Eq. 22 and Eq. 25 for the

bi-dimensional case), leads to

µη|η̂k>ak ,η̂∗ =m+Sηη̂ ·Sη̂η̂
−1 · (η̂∗−m̂)=µ+Σηη̂ ·Ση̂η̂

−1 · (η̂∗− µ̂) (A16)

σ2
η|η̂k>ak ,η̂∗ =Sηη−Sηη̂ ·Sη̂η̂

−1 ·Sηη̂
T =Σηη−Σηη̂ ·Ση̂η̂

−1 ·Σηη̂
T (A17)10

For sake of simplicity, these equalities will be demonstrated for one available fore-
cast model. In this case only two variables are taken in account, η and η̂, and their joint
distribution is truncated over the variable η̂ by the threshold value a. Hence, by substi-
tuting Eqs. (A10), (A11), (A13) and (A14), adapted for the specific case, in Eq. (A16)
the following equation is obtained15

µ−
σηη̂√
ση̂η̂

·λ(α)+
σηη̂+

σηη̂ ·ση̂η̂
ση̂η̂

·δ(α)

ση̂η̂+
ση̂η̂2

ση̂η̂
·δ(α)

·
[
η̂∗− µ̂+

ση̂η̂√
ση̂η̂

·λ(α)

]
=µ+

σηη̂

ση̂η̂
· (η̂∗− µ̂) (A18)

Which can be rewritten as

µ−
σηη̂√
ση̂η̂

·λ(α)+
σηη̂ ·ση̂η̂ · [1+δ(α)]

ση̂η̂
2 · [1+δ(α)]

·
[
η̂∗− µ̂+

√
ση̂η̂ ·λ(α)

]
=µ+

σηη̂

ση̂η̂
· (η̂∗− µ̂) (A19)
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By developing Eq. (A19) the following equality is obtained

µ+
σηη̂

ση̂η̂
· (η̂∗− µ̂)=µ+

σηη̂

ση̂η̂
· (η̂∗− µ̂) (A20)

Taking in account the Eq. (A17), it can be rewritten as

σηη+
σηη̂

2

ση̂η̂
·δ(α)−

[
σηη̂+

σηη̂ ·ση̂η̂
ση̂η̂

·δ(α)
]2

ση̂η̂+
ση̂η̂2

ση̂η̂
·δ(α)

=σηη−
σηη̂

2

ση̂η̂
(A21)

By developing it the following equation is obtained5

σηη+
σηη̂

2

ση̂η̂
·δ(α)−

{σηη̂ ·ση̂η̂ · [1+δ(α)]}2

ση̂η̂ · {ση̂η̂
2 · [1+δ(α)]}

=σηη−
σηη̂

2

ση̂η̂
(A22)

Which can be rewritten as

σηη+
σηη̂

2

ση̂η̂
·δ(α)−

σηη̂
2

ση̂η̂
· [1+δ(α)]=σηη−

σηη̂
2

ση̂η̂
(A23)

Now the equality is obtained

σηη−
σηη̂

2

ση̂η̂
=σηη−

σηη̂
2

ση̂η̂
(A24)10

If considering the lower sample, only the second of the Eq. (A15) changes, while the
other two expressions are still the same

αk =
ak−mk√

Sη̂k η̂k

λ(α) = −
φ(α)

Φ(α)
(A25)

δ(α) = λ(α) · [λ(α)−α]15
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The change in the form of λ(α) does not modify the previous procedure, which re-
mains valid also for the lower sample and leads to the same result, with the only obvious
difference that the sample moments are computed on the lower sample.
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Table 1. Probability that the true value exceeds the 350 m3 s−1 threshold when the expected
value of prediction equals 250 m3 s−1, computed for each model and their Bayesian combina-
tion.

P (y>350 m3 s−1|ŷ=250 m3 s−1)

TOPKAPI TETIS ANN 3 MODELS

0.25 0.34 0.16 0.15
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Table 2. Expected value of prediction corresponding to the probability of 20% that the true value
will exceed the 350 m3 s−1 threshold, computed for each model and their Bayesian combination.

E [y |ŷ ]|[P (y>350 m3 s−1|ŷ)=0.2]

TOPKAPI TETIS ANN 3 MODELS

217 m3 s−1 138 m3 s−1 270 m3 s−1 284 m3 s−1
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Fig. 1. Probability of exceeding the dyke level for the same expected value, forecasted by
models with different reliability.
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Fig. 2. Comparison between the expected value provided by models with different reliability
when the probability of exceeding the dyke level is the same for all the models.
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(a)

(b)

Fig. 3. (a) An optimal situation for using the QR. (b) Poor results are obtained using QR in the
situation represented here, which, by the way, is quite common in hydrological applications.
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Fig. 4. Truncated normal joint distributions. The division of the Joint Distribution in the normal
space into two bivariate truncated normal distributions is shown. The red line represents the
modal value, while the grey lines represent the 5% and the 95% quantiles. The light blue line
represents the threshold used in order to divide the two TNDs.
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Fig. 5. Digital Elevation Model of the Baron Fork Basin closed at Eldon.
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Fig. 6. Schematization of the available data division for calibrating and validating the models
and the MCP.
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(a)

(b)

Fig. 7. (a) Error Standard Deviation for Topkapi model (TPK), Tetis model (TET), ANN model
and their combinations during the entire validation period of the MCP. (b) Nash-Sutcliffe coef-
ficient for Topkapi model (TPK), Tetis model (TET), ANN model and their combinations during
the entire validation period of the MCP.

9263

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/9219/2010/hessd-7-9219-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/9219/2010/hessd-7-9219-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 9219–9270, 2010

Recent developments
in predictive
uncertainty
assessment

G. Coccia and E. Todini

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 8. Comparison between the PU computed with one or two models on a flood event during
calibration period. Observed discharges (black line); expected value conditioned only to the
Topkapi forecast (dashed line); expected value conditioned to the Topkapi and Tetis forecasts
(dotted line); 90% uncertainty band conditioned to the Topkapi forecast (light grey band); 90%
uncertainty band conditioned to the Topkapi and Tetis forecasts (grey band).
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Fig. 9. Comparison between the PU computed combining, two or three models on a flood event
during calibration period. Observed discharges (black line); expected value conditioned only to
the Topkapi and Tetis forecasts (dotted line); expected value conditioned to the Topkapi, Tetis
and Ann forecasts (dashed line); 90% uncertainty band conditioned to the Topkapi and Tetis
forecasts (light grey band); 90% uncertainty band conditioned to the Topkapi, Tetis and Ann
forecasts (grey band).
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Fig. 10. Comparison between the PU computed with one or two models on a flood event during
validation period. Observed discharges (black line); expected value conditioned only to the
Topkapi forecast (dashed line); expected value conditioned to the Topkapi and Tetis forecasts
(dotted line); 90% uncertainty band conditioned to the Topkapi forecast (light grey band); 90%
uncertainty band conditioned to the Topkapi and Tetis forecasts (grey band).
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Fig. 11. Comparison between the PU computed combining, two or three models on a flood
event during validation period. Observed discharges (black line); expected value conditioned
only to the Topkapi and Tetis forecasts (dotted line); expected value conditioned to the Topkapi,
Tetis and Ann forecasts (dashed line); 90% uncertainty band conditioned to the Topkapi and
Tetis forecasts (light grey band); 90% uncertainty band conditioned to the Topkapi, Tetis and
Ann forecasts (grey band).
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Fig. 12. Flood event during calibration period. The lower part represents the discharge fore-
cast; observed values (continuous line); expected value conditioned to the Topkapi, Tetis
and Ann forecasts (dashed line); 90% uncertainty band (grey area); alarm threshold of
350 m3 s−1(small dashed line). The upper part represents the probability of exceeding the
alarm threshold; observed binary response (continuous line) and Probability of exceeding the
threshold computed by the MCP (dashed line).
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Fig. 13. Flood event during validation period. The lower part represents the discharge forecast;
observed values (continuous line); expected value conditioned to the Topkapi, Tetis and Ann
forecasts (dashed line); 90% uncertainty band (grey area); alarm threshold of 350 m3 s−1(small
dashed line). The upper part represents the probability of exceeding the alarm threshold; ob-
served binary response (continuous line) and Probability of exceeding the threshold computed
by the MCP (dashed line).
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Fig. 14. Frequency of actual threshold exceedances vs. the probability estimated using the
MCP Bayesian combination of the three models. The red line represents the perfect behaviour.
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